Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.
نویسندگان
چکیده
Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.
منابع مشابه
Induction of XIST expression from the human active X chromosome in mouse/human somatic cell hybrids by DNA demethylation.
X chromosome inactivation occurs early in mammalian development to transcriptionally silence one of the pair of X chromosomes in females. The XIST RNA, a large untranslated RNA that is expressed solely from the inactive X chromosome, is implicated in the process of inactivation. As previous studies have shown that the XIST gene is methylated on the active X chromosome, we have treated a mouse/h...
متن کاملStabilization and Localization of Xist RNA are Controlled by Separate Mechanisms and are Not Sufficient for X Inactivation
These studies address whether XIST RNA is properly localized to the X chromosome in somatic cells where human XIST expression is reactivated, but fails to result in X inactivation (Tinker, A.V., and C.J. Brown. 1998. Nucl. Acids Res. 26:2935-2940). Despite a nuclear RNA accumulation of normal abundance and stability, XIST RNA does not localize in reactivants or in naturally inactive human X chr...
متن کاملActive Chromatin Marks Are Retained on X Chromosomes Lacking Gene or Repeat Silencing Despite XIST/Xist Expression in Somatic Cell Hybrids
BACKGROUND X-chromosome inactivation occurs early in mammalian development and results in the inactive X chromosome acquiring numerous hallmarks of heterochromatin. While XIST is a key player in the inactivation process, the method of action of this ncRNA is yet to be determined. METHODOLOGY/PRINCIPAL FINDINGS To assess which features of heterochromatin may be directly recruited by the expres...
متن کاملXIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer
Pig cloning by somatic cell nuclear transfer (SCNT) remains extremely inefficient, and many cloned embryos undergo abnormal development. Here, by profiling transcriptome expression, we observed dysregulated chromosome-wide gene expression in every chromosome and identified a considerable number of genes that are aberrantly expressed in the abnormal cloned embryos. In particular, XIST, a long no...
متن کاملEffects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos
Xist is an X-linked gene responsible for cis induction of X chromosome inactivation. Studies have indicated that Xist is abnormally activated in the active X chromosome in cloned mouse embryos due to loss of the maternal Xist-repressing imprint following enucleation during somatic cell nuclear transfer (SCNT). Inhibition of Xist expression by injecting small interfering RNA (siRNA) has been sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 330 6003 شماره
صفحات -
تاریخ انتشار 2010